skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Keller, Sarah L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Micron-scale, liquid-liquid phase separation occurs in membranes of living cells, with physiological consequences. To discover which lipids might support phase separation in cell membranes and how lipids might partition between phases, miscibility phase diagrams have been mapped for model membranes. Typically, model membranes are composed of ternary mixtures of a lipid with a high melting temperature, a lipid with a low melting temperature, and cholesterol. Phospholipids in ternary mixtures are chosen primarily to favor stable membranes (phosphatidylcholines and sphingomyelins) or add charge (phosphatidylglycerols and phosphatidylserines). A major class of phospholipids missing from experimental ternary diagrams has been the phosphatidylethanolamines (PEs). PE-lipids constitute up to 20 mol% of common biological membranes, where they influence protein function and facilitate membrane fusion. These biological effects are often attributed to PE’s smaller headgroup, which leads to higher monolayer spontaneous curvatures and higher melting temperatures. Taken alone, the higher melting points of saturated PE-lipids imply that liquid-liquid phase separation should persist to higher temperatures in membranes containing PE-lipids. Here, we tested that hypothesis by substituting a saturated PE-lipid (DPPE) for its corresponding PC-lipid (DPPC) in two well-studied ternary membranes (DOPC/DPPC/cholesterol and DiphyPC/DPPC/cholesterol). We used fluorescence microscopy to map full ternary phase diagrams for giant vesicles over a range of temperatures. Surprisingly, we found no micron-scale, liquid-liquid phase separation in vesicles of the first mixture (DOPC/DPPE/cholesterol), and only a small region of liquid-liquid phase separation in the second mixture (DiphyPC/DPPE/cholesterol). Instead, coexisting solid and liquid phases were widespread, with the solid phase enriched in DPPE. An unusual feature of these ternary membranes is that solid and liquid-ordered phases can be distinguished by fluorescence microscopy, so tie-line directions can be estimated throughout the phase diagram, and transition temperatures to the 3-phase region (containing a liquid-disordered phase, a liquid-ordered phase, and a solid phase) can be accurately measured. 
    more » « less
    Free, publicly-accessible full text available May 9, 2026
  2. Unlike human intestines, which are long, hollow tubes, the intestines of sharks and rays contain interior helical structures surrounding a cylindrical hole. One function of these structures may be to create asymmetric flow, favoring passage of fluid down the digestive tract, from anterior to posterior. Here, we design and 3D print biomimetic models of shark intestines, in both rigid and deformable materials. We use the rigid models to test which physical parameters of the interior helices (the pitch, the hole radius, the tilt angle, and the number of turns) yield the largest flow asymmetries. These asymmetries exceed those of traditional Tesla valves, structures specifically designed to create flow asymmetry without any moving parts. When we print the biomimetic models in elastomeric materials so that flow can couple to the structure’s shape, flow asymmetry is significantly amplified; it is sevenfold larger in deformable structures than in rigid structures. Last, we 3D-print deformable versions of the intestine of a dogfish shark, based on a tomogram of a biological sample. This biomimic produces flow asymmetry comparable to traditional Tesla valves. The ability to influence the direction of a flow through a structure has applications in biological tissues and artificial devices across many scales, from large industrial pipelines to small microfluidic devices. 
    more » « less
  3. Despite longstanding excitement and progress toward understanding liquid–liquid phase separation in natural and artificial membranes, fundamental questions have persisted about which molecules are required for this phenomenon. Except in extraordinary circumstances, the smallest number of components that has produced large-scale, liquid–liquid phase separation in bilayers has stubbornly remained at three: a sterol, a phospholipid with ordered chains, and a phospholipid with disordered chains. This requirement of three components is puzzling because only two components are required for liquid–liquid phase separation in lipid monolayers, which resemble half of a bilayer. Inspired by reports that sterols interact closely with lipids with ordered chains, we tested whether phase separation would occur in bilayers in which a sterol and lipid were replaced by a single, joined sterol–lipid. By evaluating a panel of sterol–lipids, some of which are present in bacteria, we found a minimal bilayer of only two components (PChemsPC and diPhyPC) that robustly demixes into micron-scale, liquid phases. It suggests an additional role for sterol–lipids in nature, and it reveals a membrane in which tie-lines (and, therefore, the lipid composition of each phase) are straightforward to determine and will be consistent across multiple laboratories. 
    more » « less
  4. This review describes the major experimental challenges researchers meet when attempting to couple phase separation between membranes and condensates. Although it is well known that phase separation in a 2D membrane could affect molecules capable of forming a 3D condensate (and vice versa), few researchers have quantified the effects to date. The scarcity of these measurements is not due to a lack of intense interest or effort in the field. Rather, it reflects significant experimental challenges in manipulating coupled membranes and condensates to yield quantitative values. These challenges transcend many molecular details, which means they impact a wide range of systems. This review highlights recent exciting successes in the field, and it lays out a comprehensive list of tools that address potential pitfalls for researchers who are considering coupling membranes with condensates. 
    more » « less
  5. Researchers choose different methods of making giant unilamellar vesicles in order to satisfy different constraints of their experimental designs. A challenge that arises when researchers use a variety of methods is that each method may produce vesicles with a different average lipid ratio, even if all experiments use lipids from a common stock mixture. Here, we use mass spectrometry to investigate ratios of lipids in vesicle solutions made by five common methods: electroformation on indium tin oxide slides, electroformation on platinum wires, gentle hydration, emulsion transfer, and extrusion. We made vesicles from either 5-component or binary mixtures of lipids chosen to span a wide range of physical properties: di(18:1)PC, di(16:0)PC, di(18:1)PG, di(12:0)PE, and cholesterol. For a mixture of all five of these lipids, ITO electroformation, Pt electroformation, gentle hydration, and extrusion methods result in only minor shifts in lipid ratios (≤ 5 mol%) relative to a common stock solution. In contrast, emulsion transfer results in ~80% less cholesterol than expected from the stock solution, which is counterbalanced by a surprising overabundance of saturated PC-lipid relative to all other phospholipids. Experiments using binary mixtures of saturated and unsaturated PC-lipids and cholesterol largely support results from the 5-component mixture. In general, our results imply that experiments that increment lipid ratios in small steps will produce data that are highly sensitive to the technique used and to sample-to-sample variations. For example, sample-to-sample variations are roughly ±2 mol% for 5-component vesicles produced by a single technique. In contrast, experiments that explore larger lipid ratio increments or that seek to explain general trends and new phenomena will be less sensitive to sample-to-sample variation and the method used. 
    more » « less
  6. Membranes of vacuoles, the lysosomal organelles of Saccharomyces cerevisiae (budding yeast), undergo extraordinary changes during the cell’s normal growth cycle. The cycle begins with a stage of rapid cell growth. Then, as glucose becomes scarce, growth slows, and vacuole membranes phase separate into micrometer-scale domains of two liquid phases. Recent studies suggest that these domains promote yeast survival by organizing membrane proteins that play key roles in a central signaling pathway conserved among eukaryotes (TORC1). An outstanding question in the field has been whether cells regulate phase transitions in response to new physical conditions and how this occurs. Here, we measure transition temperatures and find that after an increase of roughly 15 °C, vacuole membranes appear uniform, independent of growth temperature. Moreover, populations of cells grown at a single temperature regulate this transition to occur over a surprisingly narrow temperature range. Remarkably, the transition temperature scales linearly with the growth temperature, demonstrating that the cells physiologically adapt to maintain proximity to the transition. Next, we ask how yeast adjust their membranes to achieve phase separation. We isolate vacuoles from yeast during the rapid stage of growth, when their membranes do not natively exhibit domains. Ergosterol is the major sterol in yeast. We find that domains appear when ergosterol is depleted, contradicting the prevalent assumption that increases in sterol concentration generally cause membrane phase separation in vivo, but in agreement with previous studies using artificial and cell-derived membranes. 
    more » « less